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HEC Complexity: Hardware
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HEC Complexity: Software
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Understanding Performance Behavior of HEC Systems

 Lots of research on application performance analysis and 
debugging tools:
– Jumpshot, ParaGraph, Vampir, TAU

 The needs of system software developers often overlooked:
– impossible to effectively tune the OS without
– high degress of efficiency unattainable by applications
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Plan

We will develop software infrastructure to provide end-to-end 
analysis and visualization of I/O system software.

Develop/improve/deploy:

 end-to-end, scalable tracing integrated into the I/O system (MPI-IO, 
I/O forwarding, file systems),

 new visual representations and analysis techniques for inspecting 
traces and extracting knowledge, scalable to very large systems 
and integrable with existing techniques.
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Data Gathering

Capture data:

 at HEC scales,
 from all layers of the I/O software stack,
 correlated to allow associating operations between layers,
 including information on failures and performance anomalies,
 using a general model applicable across a range of systems.
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Large Scale Tracing

Adopt successful techniques from the field rather than build new ones,
focus on gaps in existing tools:

 HPCT-IO, IOT,
 TAU,
 Sandia's lightweight tracing in SYSIO,
 MPE.

Initial aim:
 gather logs of full-scale application runs performed on Intrepid 

(Argonne's 557 TF BG/P)
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Comprehensive Data Gathering

Cover all layers of the I/O software stack:

 a high-level I/O library,
 POSIX and MPI-IO (PMPI),
 I/O forwarding,
 filesystem clients and servers,
 hardware?
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End-to-End Capture of Behavior

Correlate data obtained from individual components at different layers 
into a coherent whole.

 augment all components from the previous slide to enable the 
correlation between layers,

 API/protocol extensions required.

We want to be able to match operations on I/O servers back to the 
application I/O call that initiated them.
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Visualization

Create the information visualization algorithms and applications 
necessary to provide insight into I/O system behavior under a wide 
variety of workloads.

 interactive drill-down techniques,
 visual space design for multidimensional linking,
 metric design for data filtering and abstraction,
 application-driven strategies.



12

Interactive Drill-Down Techniques

Given the scale, any visual analysis tool needs to provide summary 
information and the ability to see detailed data in context.

 multi-scale visualization approach,
 intuitive visualization interface,
 study I/O strategies in a high-dimensional optimization space.

Visualize various information aggregations at different levels of detail 
in a multidimensional space by choosing from a collection of visual 
transformations.
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Preliminary Work
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Preliminary Work
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Visual Space Design

Provide insight into correlating patterns by presenting information from 
multiple levels of I/O communication in a coherent and linked manner:

 communication paths and system topology,
 bottlenecks in intermediate layers,
 file access patterns on I/O servers,
 tracking the flow of data.
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Metric Design

Even on relatively small systems log data is in XX GB range.

We will seek to mine collected data that is too large before 
visualization.

 standalone metrics measured on individual 
server/process/connection (load, bandwidth, etc),

 graph theory based (bipartite degree centrality, etc),
 clustering based (two-mode clustering, distance based clustering).
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Conclusion

This project has not started yet.

Expected outcomes:
 provide more thorough understanding of unexpected storage 

system behavior (bottlenecks, etc),
 enable more effective performance debugging through the 

pinpointing of specific underperforming storage components,
 improve the understanding of the mapping of application data 

structures to the storage ones, and its impact.
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